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We have extended the Andrews method to derive the thermodynamic properties of an ensemble
of spherocylinders. In the case of hard spherocylinders, by using the virial coefficients of the
isotropic phase which agree with the results of recent computer simulation studies, we have
determined several properties near the nematic-isotropic phase transition point in the mean
field approximation. Including the attractive part of the potential, the values derived from the
model are in reasonably good agreement with experimental data and in fact show considerable
improvements over the currently available model calculations. In particular, the results are
compared with those based on the scaled particle theory.

1 INTRODUCTION

The importance of both the attractive and repulsive contributions to the
intermolecular potential in determining the properties of nematic phase has
been recognised for the past few years.!~!! Of late, there have been several
attempts to develop models of nematic liquid crystals including both the
factors.!*"28 Of these, the scaled particle theory as developed recently by
Martha Cotter'?® appears to be the most significant, since it considers a
continuous distribution of anisotropic molecules, assumed to be of the
form of spherocylinders of realistic length to breadth ratios (x). Cotter
has made calculations in the mean field approximation for spherocylinders
with x = 3. She found that the qualitative features of the N-I transition
could be reproduced. However, comparing the theoretical results with the
data on paraazoxyanisole (PAA) for which all the relevant experimental
values are available, it was found that the theoretical packing fraction was
too low and further, the calculated values of the second derivatives of the
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thermodynamic potential, viz., specific heat (C, and C,), coefficient of
thermal expansion a, etc., were significantly higher than the experimental
values.

There have been several computer simulation studies on systems of
hard spherocylinders with x = 2 and 3. The equation of state as well as
several virial coefficients have been evaluated in such studies. The calcula-
tions have all been made in the isotropic phase of such a system, somewhat
away from the nematic-isotropic transition point. (As the density approaches
the value at the phase-transition, the calculations become more and more
time consuming and impractical) A comparison between the results of
scaled particle theory (SPT) on hard spherocylinders and those of computer
studies shows that while SPT gives reasonably good values at low densities,
it overestimates the pressure as the density is increased. The discrepancy
also increases at higher densities. Consequently, we may expect that even
for a system of hard spherocylinders, the results of SPT in the nematic
state are not likely to be accurate.

It would of course be interesting to extrapolate the essentially “exact”
results of the computer studies to the region of nematic-isotropic phase
transition. We found that the model proposed by Andrews?®? for calculating
the equation of state of an assembly of hard spheres can be extended to the
case of spherocylinders. Further, the extended model provides a suitable
scheme for making calculations in the ordered (nematic) phase also.

In the next section of this paper, we present some results of our calcula-
tions based on the SPT of Martha Cotter!? for different values of the length
to breadth ratio x. As we shall see, for a value of x ~ 1.75, the packing frac-
tion at the nematic-isotropic transition and many other properties agree
reasonably well with experimental data. However the second derivatives
still do not agree with experiment; the calculated values are significantly
lower than the data on PAA.

In Section 3, we will present an extension of the Andrews model to the
case of spherocylinders. We have made calculations in the mean field
approximation, both for hard spherocyclinders as well as for spherocylinders
with a specific form of attractive potential between them. The results of all
the calculations are compared with the experimental data on PAA.

29-34

2 CALCULATIONS BASED ON SPT

We used the theoretical expressions derived by Martha Cotter!? in all our
calculations. Assuming that the attractive potential is of the form?3¢

u;= —84p — 8, pnP;(cos 0)), 1)



Downloaded by [Tomsk State University of Control Systems and Radio] at 03:34 23 February 2013

ANDREWS METHOD FOR N-I TRANSITION 65

where

Jsz(cos G)exp{[A(p) + i%g]an(cos 9)} sin 8 d6
[¢]

n= ; (2
L exp{[A(p) + iz—Tp:lan(cos 9)}sin 0do
1 —(1- 3
Ap) = San[——S(l—(—_—%)le—/—], 3)

d=1vep; R=6(x— 1)2/a(Bx — 1); g =2/(3x — 1); $, and 9, are the
strengths of the isotropic and the anisotropic parts of the potential, p is the
number density, v, is the molecular volume and d is the packing fraction.
The pressure P is given by the relation

1d? |98 3
kT = 7% —~ ——— |20 4 72,2
Pyo/kT == >¥T [vo+vo"]
where
_ dll +d + 2/3(1 + q — ¢*/2)d* + nrd/2{1 + (1 + 29)d/3} (1 ~ 37%))
- (1 —ay

The chemical potential u_ is given by

¥

]’:} = (In4nf(Q)) + In{p/(1 — d)} + 6d[1 + nR(L — 5/87)/61/(1 — d)

+ 4d*(1 + g/2)[1 — g/4 + nR(1 — 5/84*)/41/(1 — d)*

3 9

+ 7 — <—° + 2 n2>d/kT (%)
Vo Do

For a system of hard spherocylinders, 3, = 3, = 0. The results of calcula-

tions on this system are shown in Table I and will be discussed later. In

such a case the coefficient y defined as

olnT
= 6
' [a ll'l p]n:constant ( )

is infinity since the order parameter of the system does not directly depend
on temperature. (y is a measure of the relative importance of volume com-
pared to that of temperature in determining the variation of 7 of the medium
near Ty;.) On the other hand, if we consider only the attractive potential
given by the Eq. (1), and do not take into account the hard-rod feature of the
molecules, y = 1. The experimental value is y = 4 for PAA.37-*# This shows
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the necessity for incorporating both the attractive and hard-rod features in
the theory.

Apart from the length to breadth ratio x, there are essentially two adjust-
able parameters in the theory, viz., the parameters of the attractive potential,
3 and 3,. 9, is the parameter describing the average or isotropic attraction
between the centres of mass of the spherocylinders, while 3, is the param-
eter describing the anisotropic part of the attractive potential. They may be
assumed to arise essentially from the dipole-dipole part of the dispersion
forces. In any case, 3, and 3, are both only “effective” parameters since the
potential has been taken to be proportional to the density (see Eq. 1) to
satisfy thermodynamic consistency.?¢

We have made calculations for various values of x. The criterion adopted
for selecting the values of 9, and 9, was to adjust Ty, and the packing frac-
tion (d,.m) of the nematic phase at Ty to 409°K and 0.62 which are the
experimental values for PAA. At Ty, the pressures of the nematic and iso-
tropic phases were adjusted to be equal to the atmospheric pressure. The
chemical potentials of the two phases were also adjusted to be the same. The
results of calculations on the order parameter n at Ty, the density change
Ap/p, the heat of transition are shown in Table II for various values of x.
The second derivatives, viz., the specific heat at constant pressure C,, the
specific heat at constant volume C,, the coefficient of thermal expansion «,
and the isothermal compressibility f§ are shown at Ty, for both the N and I
phases. Further, the coefficient 7 is also listed in the table.

x = 1 gives a spherical shape to the molecules, i.e., there is no geometrical
anisotropy. In this case again y = 1. As the value of x is increased, y value also
increases, first slowly and then very rapidly. The ratio of 3,/3, also increases
in a similar manner. C, decreases with x, whereas « and f are not influenced
very much by changing x. The order parameter at Ty, increases slowly with
x. Calculations are not possible beyond x =~ 2.45 if we want to retain the
value of packing fraction d = 0.62 at Ty = 409°K. Martha Cotter had to
lower the value of d to 0.445 to be able to calculate for x = 3 and adjust
3o and 9, suitably to get y = 4. Further in this case, the second derivatives
turn out to be too high'*® compared to the experimental data.

If we choose to retain the correct value of the packing fraction (Table II),
we see that x = 1.75 yields y > 4. It is also seen that the overall agreement
with experiment is reasonably good for this value of x. In this case, however,
the second derivatives are all underestimated, though they are closer to the
experimental values compared to the results for x = 3. Returning to the hard
spherocylinder fluid, we give in Table HI the comparison between the
equation of state as got by computer simulation studies and results of SPT
in the isotropic phase for x = 1, 2, and 3. (x = 1 defines a system of hard
spheres). Though the comparison is quite good at the lowest densities, the
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TABLE III

Equation of state in the isotropic phase
(i) Poo/kTfor x = 3

Computer Present
d simulation® Martha-Cotter® calculation

0.54 126 + 0.2 15.56 12.69
0.50 90 + 0.2 10.56 9.04
0.45 5.85 + 0.07 6.6 5.94
0.40 3.84 + 0.04 4.17 3.89
0.35 2.51 + 0.04 2.63 2.53
0.30 1.62 + 0.04 1.65 1.62

(i) PV/NKT for x = 2

0.3351 5.53 £ 0.14 5.70 5.55
0.3879 7.57 £ 0.26 7.88 7.53
0.4460 10.74 + 0.24 11.53 10.75
0.5096 16.80 + 0.90 18.12 16.35

(iii) PV/NkT for x =

—

Computer Present
VA simulation® SPT*® calculation

0.10 1.36 1.36 1.36
0.20 1.89 1.89 1.89
0.30 2.68 2.70 2.68
0.40 3.90 3.97 3.90
0.50 5.83 6.04 5.84
0.55 7.23 7.55 7.24
0.60 .06 9.57 5.10
0.625 10.18 10.82 10.25
0.65 11.48 12.28 11.60
0.67 12.66 13.62 12.83
0.68 13.32 14.36 13.52
0.69 14.01 15.15 14.26
0.70 14.75 15.99 15.05

2 Computer simulation values from Ref. 29 for x = 3, Ref.
33 for x = 2, and Ref. 44 for x = 1.
b Ref. 13,

©Z = 6d/(,/2m).
b SPT results which are the same as Percus-Yevick results
are from Ref. 35.

SPT overestimates the pressure as the density is increased and the dis-
crepancy also increases with increase of density. This trend implies that the
SPT calculations would be quite inaccurate in the nematic phase.

It would indeed be interesting to extrapolate up to the phase transition
point the “exact” values got by computer simulation studies. We found it
convenient to extend Andrews method for this purpose.



Downloaded by [Tomsk State University of Control Systems and Radio] at 03:34 23 February 2013

70 K. L. SAVITHRAMMA AND N. V. MADHUSUDANA
3 THE ANDREWS METHOD

Andrews developed a scheme for deriving the equation of state for a system
of hard spheres by using an intuitive physical interpretation of the “activity”
of a classical fluid. The results agreed better than those of SPT with the Monte
Carlo calculations. The scheme can be easily extended to a system of sphero-
cylinders, as we shall see below.

Let the ensemble consist of N molecules which can take m discrete
orientations such that N, molecules have orientation 1, N, have orientation
2, etc. Then, choosing N, --- N,, so as to maximise the partition function,
the maximum term of the ensemble partition function is given by

OuN Ny Vo T) = (N oo N [ [or, ooy

d*Qy - dQyexp{—Up(ry - ry; Q; - Q/kT} (7)
where V is the volume, T the temperature, N = Y "_, N, and U, is the energy
of the N particle system. The chemical potential of the molecule which is in
the direction €, is given by

Hi Jln Qy

kT =~ 6N,

where p = N/V is the number density, f(2;) = N;/N, the fraction of the
total number of molecules of ith type in the medium. Hence } 7, f(Q,) = 1.
The reciprocal activity of the ith species is given by>?

1 N N
ai_l =E‘J"" fndsra fder+l fJH an
N a=1 a=1
N

1
€Xpy — 7+ Z Unst,alPness 7o Qi Q) exp{—Un(ry -+ ry; Qy -+ Qu)/kT}
kT a=1
)

= In(f(Q)p) — Ina; '(p, T) ®)

where

Zy = f Jaﬁdaruj-~- JGIdeQa exp{—Un(r, -~ ry; Q, - Qu/kT}

where ry,  is the position of the (N + 1)th molecule in the ith direction
introduced into a system of N molecules and Q; represents its angular
coordinates, and YN, Uy, olrne1s7a; @i, Q,) its energy. Assuming
that the equilibrium structure is unaffected by the introduction of the new
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particle, we can write
1
dnVa; ! = fds",vﬂ exp{— ﬁz Un+1,alfne s s 4 Qa)}‘ (10)

This means that in the fixed, most probable configuration of the N particle
system, the added molecule is allowed to wander throughout the system
subject to the weighting function given by Eq. (10). For hard spherocylinders,
Uy +1.q 18 o0 if the two particles come into contact and zero if they do not.
In that case, the reciprocal activity is merely the probability of inserting a
spherocylinder without overlapping with any other spherocylinder. Adapt-
ing Andrews method?® to the present case, we can write it as a product of
two terms. The first is the probability that an arbitrarily chosen point ry, ,
does not lie within the core of any of the N molecules. This is given by

(1 — vop) = 1 — (4/3nr® + mrl)p (11

where v, is the volume of a spherocylinder of radius r and cylindrical length
I. Finding such a point ensures that there is no spherocylinder whose centre
lies within a volume v, around this point. The second part in calculating
a; ! consists of finding the probability, conditional on the first, that the hole
around the given point can actually accommodate the introduced particle.
This means that the centre of any other spherocylinder say of kth type should
not lie within the excluded volume of the introduced particle, i.e., within the
additional volume

viky = 8nr?l + Znr® + 4rl sin 6, — (4/37r* + wr?l) (12)

where 6, is the angle between the long axes of the introduced molecule and
the solvent molecule of the kth type. Following Andrews, the probability
P, that all N, molecules lie outside v, is the N, th power of the probability
that one of them lies outside vl,,. Assuming that the available free volume is
independent of the species, we may write for large values of N,

P _ (1 l’z’;i‘id )Nk - exp(- U;}:‘lde ) (13)
¢ V*Zk"':l N V_ka=1Nkw

where (V — Y%_, N ) is the “free” volume available to the molecules.
@ can be expected to be of the order of the average volume occupied by a
molecule when they are close-packed. Following Andrews, we assume that
w is actually dependent on the density, increasing somewhat as the density
is lowered.

The probability that an introduced molecule can be accommodated
in the N molecule system is now given by

- 2 vaga Ny p YRy vihg Q)
k1=_[lpk = exp(— = —Na | = P~ T wp .
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Hence we can write

(14)

-1 _ A — v, p)exp<~ P Z?:l f(Qk)U;'Ed>

1 — wp

Using the relations (8) and (14), the Gibbs free energy of the hard sphero-
cylinder system can be written as

GY/NKT = GikT) = Y. B i@,

i=1

Ad

d
= 1n[(1 )] + <In fQ)) + 5 (15)

where

144+ 210 = 1)+ 60c — 1 5, T sin 0,/ (@)/(€)

4= Gx — 1)

For the sake of simplicity, we expand sin 6;, in terms of Legendre poly-
nomials. Retaining terms up to P,(cos 8,) only and ignoring correlations
between the i and k molecules in the mean field theory, we can write!3

5
sin 6, ~ z_ 3-725 P,(cos 6;)P,(cos 6,)

4

The pressure is given by?3*

P¥V Py [m
NkT - LT ;f [Z(f(Q,)ln a-l)]dp

Ad
=——1n(l—d+ L— 16
T T dh Ty 1Y
The Helmholtz free energy
AY G PV (1—-4d
NKkT — NKT ~ NiT = Ind y In(1 —d)+ n f(Q)
d
LAy (17)
dJoq_ .“:y
Vo

 can be expected to depend on the density® and is assumed to be of the
formw = Y2 4 w,p"
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For the close packed solid,
{ (x—1+./2/3)
— = 2./3vy = 20p——— . 18
oy = B30 = ()

Wgaa 18 the high density limit. To calculate the low density limit of w, the
pressure relation in the isotropic phase, viz.,

PV 1 Aod A, f ydy
-l ~d I I L T
<NKT)M =D =T L T ey

Wyotid =

where A, = (6x? + 9x — 1)/(3x — 1) is expanded in powers of p. Andrews
used terms up to the third virial coefficient in his calculations on spheres, i.e.,
he assumed that w = w, + w,p. However, by using this restricted expansion,
the compressibility factors P*V/NkT of the isotropic phase of sphero-
cylinders are not in good agreement with the computer calculations?—32
for x = 2 and 3. Hence we took the higher order terms in the expansion of w
and found that 7 terms of the w expansion are sufficient to give reasonable
agreement with the computer calculations. To calculate the coefficients
w,,n=0,1,...,6, we proceed as follows:

6
wsolid = Z wnp'(') (20)
n=0

where w4 and p, are given by the relation (18). The pressure relation (19)
is expanded in powers of p and the first eight vinal coefficients (i.e., B,, B,,
B;, By, ..., Bg) are obtained in terms of w,:

B, =1

= (3x* + 6x — 1)/(3x — 1) which is an exact value®®

vo B3 = (vg + 2A4wg)/3

v3B, = (v} + 34,0, + 34,05)/4

v3Bs = (v} + 4Agw, + 8Aowow; + 44,wR)/5

V3B = (V8 + 54w + 104,wo0, + 1540wiw; + 54,03 + 5A4,w8)/6

U(S)B7 = (Ug + 6A0w4 + 12A0w0w3 + 12A0w1w2 -+ 18A0wg(1)2
+ 184w w? + 284w, + 6Ao@7)/7

8By = (1§ + TApws + 144w w3 + 144w, + 214505 w5
+ TAp2 4 424,000,0, + TAw} + 284 03w,
+ 24,03 w? + 354 0w, + TAxw0§)/8.
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The last 6 equations along with Eq. (20) are solved for w,,n =0, 1,..., 6 as
functions of x and the virial coefficients. Indeed, utilizing the above expres-
sions leads to a much better agreement with the equation of state of the hard
sphere fluid than that given by the original calculations of Andrews®® (see
Table III). Nazbeda*® has proposed the following (essentially empirical)
analytical expression for calculating the virial coefficients of a fluid of hard
spherocylinders.

B,=(4n? — 13n+ 13)a + (—2n% + 1In — 14 + Gn —n — 1) (21)

where o = x(x + 1)/(3x — 1). The first 6 virial coefficients given by the
above equation are in very good agreement with Monte Carlo calculations®?
for x < 3. Furthermore, the expression can be utilised to calculate the virial
coefficients for any arbitrary value of x < 3.

It is obvious that the Andrews method is not a fully self-contained theory
of the liquid phase, since it does not give an independent method for the
calculation of the virial coefficients. However, it does provide a convenient
scheme for calculating the properties near the nematic-isotropic phase
transition point, utilising the available computer calculations in the iso-
tropic phase. The equation of state in the isotropic phase of hard sphero-
cylinders with x = 2 and 3 have been given in Table II1. As is to be expected,
the results are in very good agreement with computer calculations.

As we have already discussed in the previous section, a hard spherocylinder
fluid would have a y = oo. We will now introduce the attractive potential
to the Andrews model exactly as has been done in the case of SPT.

Let us denote the activity of a component i by a;,'3

_ P
4= exp =P rys 0 KT

where ‘Y (r,, ..., ry) is the total potential energy of the molecules of the
type i located at r; with all other molecules. ) denotes the ensemble average
over the (N — 1) particle system 2, 3, ..., N, and an averaging over r, as well,
giving equal weights to equal volume elements in the latter instance. The
molecules are assumed to move in a uniform mean field potential u; given
by Eq. (1). I a¥ is the activity of the component i with the attractive potential
turned off, then

% = <<Cxp{—-"l’,/kT}>> == % exp{_ui/kT}‘
Therefore

a; = a¥ exp{+u;/kT}.
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Following the procedure of Ref. 13, the configurational Gibbs free energy is
given by

Gc(le---,Nm) — “
NkT - i=zl f(Ql)ln a;

_ T «_ S0P Sipyp’
- S soamar - g -0t
The expressions for pressure P and the Helmholtz free energy A, can now be
wrntten. Taking the limit of continuous orientations with the corresponding
distribution function denoted by F(Q), the thermodynamic quantities take
the following form
Gc G:'k SOP ‘929 2

NKT ~ NkT ~ kT ~ kT " 22)
where
G¥ 0
< — | FQ. *10)
NiT f (Q)ln afdQ
-The internal energy of the system is given by
U
N %0 — 3%, p1*. (23)

The pressure is given by
P =P*— 380" — 3%, p%n%, 24)

Substituting for G* and P* from the relations (15) and (16), we can obtain
the configurational Gibbs free energy and the pressure relation. The Helm-
holtz free energy is given by

A, d In(1 — d) A ydy
NKT ~ 1“(1 - d) T I FQp+ o L T gt
L= Y =5

n=0 Up

————— n (25)

The normalized distribution function F(€Q) which minimises this Helmholtz
free energy is given by

9,p 15 (x—1)72 ? ydy }
ex — 4+ — " - nP ((9)]
F(Q) = PB' KT 2d(Bx —1) Jo 1 = Y 0_0 w,y"* /g*! z

9,0  15(x —1)* Yy
V2P | 10 . o
Jéxp[{kT * 2d(3x — 1) Jo 1 = Yo g,y jontt nP () ‘;6)
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(Eq. 22) can be calculated in both the phases. The assumed value of $,/v,k
is adjusted by an iterative procedure till the Gibbs free energy in the two
phases become equal. The other parameters like C,, etc., are then calculated
as usual. Table IV lists the results for different values of x.

It is obvious from Table IV that the calculations based on the extended
Andrews model can be carried out up to x = 2.9, while these based on SPT
could only be made up to x = 2.45 (Table II). The trends of different physical
quantities as functions of x are similar to those given by SPT (Table II).
But in the case of the Andrews model, y ~ 4 for x = 2.075, which is a reason-
able improvement over x = 1.75 of SPT. Further, it is obvious from Table
IV that the new theoretical values of the second derivatives, viz., C,, Cp, 2 and
B are considerable improvements over those of SPT. In fact they come quite
close to the experimental data.*'~** However, the volume change at the
transition, Ap/p and the heat of transition AU, still remain somewhat larger
than the experimental values. The latter result is a consequence of using the
mean field approximation.® !* Short-range order effects in the medium
have to be taken into account to correct for the discrepancies.

In conclusion, our calculations have shown that SPT leads to very reason-
able results which can be compared with experimental data on PAA for
x = 1.75. We can improve upon x as well as other results, particularly the
second derivatives, by using an extension of the Andrews method along with
the computer results on hard spherocylinders in the isotropic phase. How-
ever, as in the original Maier-Saupe model in which only the attractive
part of the potential was taken into account, the order parameter at T,
as well as the heat of transition remain considerably higher than the ex-
perimental values. For cylindrically symmetric rods that we have considered
here, inclusion of short-range effects in the development of the theory can be
expected to improve the predictions just as inclusion of such effects improves
the Maier-Saupe theory.*> We have made some calculations in which the
models presented in the present paper have been extended to take into
account short-range order effects. The results will be discussed elsewhere.

However, considering a nematogenic molecule as a cylindrically sym-
metric rod is at best an approximation. Most real nematogens have a lower
symmetry, and, of late, there have been some attempts to take into account
deviations from cylindrical symmetry in the mean field approximation.
Alben*®*7 showed that such deviations can account for the lowering of
order parameter at T.. This result has been confirmed by more recent cal-
culations due to Straley*® and Luckhurst et al*® who used a suitable exten-
sion of the Maier-Saupe model. Very recently Gelbart and Barboy®® have
discussed a theory in which the shape-factor has been taken into account in
a model with a few fixed orientations. They have again showed that the
results based on cylindrically symmetric rods can be improved. Developing
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and with the appropriate attractive potential superposed on them is ob-
viously of great interest.
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