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The Nematic-Isotropic Phase 
Transition: Application of the 
Andrews Method 
K. L. SAVITHRAMMA and N. V. MADHUSUDANA 

Raman Research Institute, Bangalore 560080, India. 

(Receiued October 29, 1979; infinaf form March 27, 1980) 

We have extended the Andrews method to derive the thermodynamic properties of an ensemble 
of spherocylinders. In the case of hard spherocylinders, by using the virial coefficients of the 
isotropic phase which agree with the results of recent computer simulation studies, we have 
determined several properties near the nematic-isotropic phase transition point in the mean 
field approximation. Including the attractive part of the potential, the values derived from the 
model are in reasonably good agreement with experimental data and in fact show considerable 
improvements over the currently available model calculations. In particular, the results are 
compared with those based on the scaled particle theory. 

1 INTRODUCTION 

The importance of both the attractive and repulsive contributions to the 
intermolecular potential in determining the properties of nematic phase has 
been recognised for the past few years.'-" Of late, there have been several 
attempts to develop models of nematic liquid crystals including both the 
factors.12-28 Of these, the scaled particle theory as developed recently by 
Martha CotterI3 appears to be the most significant, since it considers a 
continuous distribution of anisotropic molecules, assumed to be of the 
form of spherocylinders of realistic length to breadth ratios (x). Cotter 
has made calculations in the mean field approximation for spherocylinders 
with x = 3. She found that the qualitative features of the N-I transition 
could be reproduced. However, comparing the theoretical results with the 
data on paraazoxyanisole (PAA) for which all the relevant experimental 
values are available, it was found that the theoretical packing fraction was 
too low and further, the calculated values of the second derivatives of the 
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64 K. L. SAVITHRAMMA A N D  N. V. MADHUSUDANA 

thermodynamic potential, viz., specific heat (C, and CJ, coefficient of 
thermal expansion a, etc., were significantly higher than the experimental 
values. 

There have been several computer simulation s t ~ d i e s ~ ’ - ~ ~  on systems of 
hard spherocylinders with x = 2 and 3. The equation of state as well as 
several virial coefficients have been evaluated in such studies. The calcula- 
tions have all been made in the isotropic phase of such a system, somewhat 
away from the nematic-isotropic transition point. (As the density approaches 
the value at the phase-transition, the calculations become more and more 
time consuming and impractical.) A comparison between the results of 
scaled particle theory (SPT) on hard spherocylinders and those of computer 
studies shows that while SPT gives reasonably good values at low densities, 
it overestimates the pressure as the density is increased. The discrepancy 
also increases at higher densities. Consequently, we may expect that even 
for a system of hard spherocylinders, the results of SPT in the nematic 
state are not likely to be accurate. 

It would of course be interesting to extrapolate the essentially “exact” 
results of the computer studies to the region of nematic-isotropic phase 
transition. We found that the model proposed by A n d r e w ~ ~ ~  for calculating 
the equation of state of an assembly of hard spheres can be extended to the 
case of spherocylinders. Further, the extended model provides a suitable 
scheme for making calculations in the ordered (nematic) phase also. 

In the next section of this paper, we present some results of our calcula- 
tions based on the SPT of Martha Cotter’’ for different values of the length 
to breadth ratio x. As we shall see, for a value of x 2i 1.75, the packing frac- 
tion at the nematic-isotropic transition and many other properties agree 
reasonably well with experimental data. However the second derivatives 
still do not agree with experiment ; the calculated values are significantly 
lower than the data on PAA. 

In Section 3, we will present an extension of the Andrews model to the 
case of spherocylinders. We have made calculations in the mean field 
approximation, both for hard spherocyclinders as well as for spherocylinders 
with a specific form of attractive potential between them. The results of all 
the calculations are compared with the experimental data on PAA. 

2 CALCULATIONS BASED ON SPT 

We used the theoretical expressions derived by Martha Cotter13 in all our 
calculations. Assuming that the attractive potential is of the form36 
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ANDREWS METHOD FOR N-I TRANSITION 65 

where 

JonP2(cos B)exp{[A(p) + g]qP,(cos B ) ]  sin 6 dB 

1 - (1-q)d/3 [ S(l - d)’ 1’ A(p) = 5nRd (3) 

d = v,p; R = 6(x - 1)2/x(3x - 1); 4 = 2/(3x - 1); 9, and 9, are the 
strengths of the isotropic and the anisotropic parts of the potential, p is the 
number density, u, is the molecular volume and d is the packing fraction. 
The pressure P is given by the relation 

Pv,/kT = n* - 2kT 1 d 2  [: + G q 2 ]  9 

where 

d[l + d + 2/3(1 + 4 - 4’/2)d2 + nrd/2{1 + (1 + 2q)d/3}(1 - $$)I 
(1 - d)3 

.n* = 

The chemical potential pc is given by 

- (In 4.nf(Q)) + ln{p/(l - d)} + 6d[1 + nR(1 - 5/8$)/6]/(1 - d) P C  

kT 
- -  

+ 4dZ(1 + 4/2)[l - 4/4 + nR(1 - 5/89’)/4]/(1 - d)’ 

For a system of hard spherocylinders, 9, = 9, = 0. The results of calcula- 
tions on this system are shown in Table I and will be discussed later. In 
such a case the coefficient y defined as 

is infinity since the order parameter of the system does not directly depend 
on temperature. (y is a measure of the relative importance of volume com- 
pared to that of temperature in determining the variation of q of the medium 
near TNI.) On the other hand, if we consider only the attractive potential 
given by the Eq. (l), and do not take into account the hard-rod feature of the 
molecules, y = 1. The experimental value is y = 4 for PAA.”v3* This shows 
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ANDREWS METHOD FOR N-I TRANSITION 67 

the necessity for incorporating both the attractive and hard-rod features in 
the theory. 

Apart from the length to breadth ratio x, there are essentially two adjust- 
able parameters in the theory, viz., the parameters of the attractive potential, 
9, and 9,. 9, is the parameter describing the average or isotropic attraction 
between the centres of mass of the spherocylinders, while 9, is the param- 
eter describing the anisotropic part of the attractive potential. They may be 
assumed to arise essentially from the dipole-dipole part of the dispersion 
forces. In any case, 9, and 9, are both only “effective” parameters since the 
potential has been taken to be proportional to the density (see Eq. 1) to 
satisfy thermodynamic con~istency.~~ 

We have made calculations for various values of x. The criterion adopted 
for selecting the values of 9, and 9, was to adjust TNI and the packing frac- 
tion (dnem) of the nematic phase at TNI to 409°K and 0.62 which are the 
experimental values for PAA. At TN], the pressures of the nematic and iso- 
tropic phases were adjusted to be equal to the atmospheric pressure. The 
chemical potentials of the two phases were also adjusted to be the same. The 
results of calculations on the order parameter q at TNI, the density change 
A p / p ,  the heat of transition are shown in Table I1 for various values of x. 
The second derivatives, viz., the specific heat at constant pressure C,, the 
specific heat at constant volume C,, the coefficient of thermal expansion a, 
and the isothermal compressibility are shown at TN] for both the N and I 
phases. Further, the coefficient y is also listed in the table. 

x = 1 gives a spherical shape to the molecules, i.e., there is no geometrical 
anisotropy. In this case again y = 1. As the value of x is increased, y value also 
increases, first slowly and then very rapidly. The ratio of 80/$, also increases 
in a similar manner. C, decreases with x, whereas tl and #I are not influenced 
very much by changing x. The order parameter at TN, increases slowly with 
x. Calculations are not possible beyond x N 2.45 if we want to retain the 
value of packing fraction d = 0.62 at TNI = 409°K. Martha Cotter had to 
lower the value of d to 0.445 to be able to calculate for x = 3 and adjust 
9, and 9, suitably to get y = 4. Further in this case, the second derivatives 
turn out to be too high13 compared to the experimental data. 

If we choose to retain the correct value of the packing fraction (Table 11), 
we see that x = 1.75 yields y N 4. It is also seen that the overall agreement 
with experiment is reasonably good for this value of x. In this case, however, 
the second derivatives are all underestimated, though they are closer to the 
experimental values compared to the results for x = 3. Returning to the hard 
spherocylinder fluid, we give in Table I11 the comparison between the 
equation of state as got by computer simulation studies and results of SPT 
in the isotropic phase for x = 1, 2, and 3. (x = 1 defines a system of hard 
spheres). Though the comparison is quite good at the lowest densities, the 
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ANDREWS METHOD FOR N-I TRANSITION 

TABLE 111 

Equation of state in the isotropic phase 
(i) Pv,/kTfor x = 3 

69 

Computer Present 
d simulation' Martha-Cotterb calculation 

0.54 12.6 k 0.2 15.56 12.69 
0.50 9.0 k 0.2 10.56 9.04 
0.45 5.85 k 0.07 6.6 5.94 
0.40 3.84 k 0.04 4.17 3.89 
0.35 2.51 i 0.04 2.63 2.53 
0.30 1.62 k 0.04 1.65 1.62 

(ii) PVINkTfor x = 2 
0.3351 5.53 k 0.14 5.70 5.55 
0.3879 7.57 0.26 7.88 7.53 
0.4460 10.74 f 0.24 11.53 10.75 
0.5096 16.80 f 0.90 18.12 16.35 

(iii) PVINkTfor x = 1 

Computer Present 
Z' simulation' SPTd calculation 

0.10 1.36 1.36 1.36 
0.20 1.89 1.89 1.89 
0.30 2.68 2.70 2.68 
0.40 3.90 3.97 3.90 
0.50 5.83 6.04 5.84 
0.55 1.23 7.55 1.24 

9.57 9.10 
1 .I8 10.82 10.25 

0.65 11.48 12.28 11.60 

0.60 
0.625 

0.67 12.66 13.62 12.83 
0.68 13.32 14.36 13.52 
0.69 14.01 15.15 14.26 
0.70 14.75 15.99 15.05 

8.06 

a Computer simulation values from Ref. 29 for x = 3, Ref. 
33 for x = 2, and Ref. 44 for x = 1. 

Ref. 13. 
' 2 = 6d/(>n)., 

SPT results which are the same as Percus-Yevick results 
are from Ref. 35, 

SPT overestimates the pressure as the density is increased and the dis- 
crepancy also increases with increase of density. This trend implies that the 
SPT calculations would be quite inaccurate in the nematic phase. 

It would indeed be interesting to extrapolate up to the phase transition 
point the "exact" values got by computer simulation studies. We found it 
convenient to extend Andrews method for this purpose. 

D
ow

nl
oa

de
d 

by
 [

T
om

sk
 S

ta
te

 U
ni

ve
rs

ity
 o

f 
C

on
tr

ol
 S

ys
te

m
s 

an
d 

R
ad

io
] 

at
 0

3:
34

 2
3 

Fe
br

ua
ry

 2
01

3 



70 K.  L. SAVITHRAMMA A N D  N .  V. MADHUSUDANA 

3 THE ANDREWS METHOD 

Andrews developed a scheme for deriving the equation of state for a system 
of hard spheres by using an intuitive physical interpretation of the “activity” 
of a classical fluid. The results agreed better than those of SPT with the Monte 
Carlo calculations. The scheme can be easily extended to a system of sphero- 
cylinders, as we shall see below. 

Let the ensemble consist of N molecules which can take rn discrete 
orientations such that N1 molecules have orientation 1, N 2  have orientation 
2, etc. Then, choosing N1 ... N ,  so as to maximise the partition function, 
the maximum term of the ensemble partition function is given by 

QN(N1 . - .  N , ,  V, T) = (N1! ... N , ! ) - ’  [... [ d 3 r ,  ... d3rN 

d3R, ... d3n, exp{ - UN(rl  ... r,; R, ... Q,)/kT} (7) 
where V is the volume, T the temperature, N = N k  and U N  is the energy 
of the N particle system. The chemical potential of the molecule which is in 
the direction Qi is given by 

where p = N / V  is the number density,f(Q,) = N J N ,  the fraction of the 
total number of molecules of ith type in the medium. Hence zy= .f(Q,) = 1. 
The reciprocal activity of the ith species is given by35 

where 

where r N + 1  is the position of the ( N  + 1)th molecule in the ith direction 
introduced into a system of N molecules and Ri represents its angular 
coordinates, and z$”= U N +  l , a ( r N +  ra; Ri, R,) its energy. Assuming 
that the equilibrium structure is unaffected by the introduction of the new 
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ANDREWS METHOD FOR N-I TRANSITION 71 

particle, we can write 

This means that in the fixed, most probable configuration of the N particle 
system, the added molecule is allowed to wander throughout the system 
subject to the weighting function given by Eq. (10). For hard spherocylinders, 
U N +  I , u  is GO if the two particles come into contact and zero if they do  not. 
In that case, the reciprocal activity is merely the probability of inserting a 
spherocylinder without overlapping with any other spherocylinder. Adapt- 
ing Andrews method35 to the present case, we can write it as a product of 
two terms. The first is the probability that an arbitrarily chosen point r N +  
does not lie within the core of any of the N molecules. This is given by 

(1 - vop) = 1 - (4/3nr3 + nr21)p (1 1) 
where vo is the volume of a spherocylinder of radius r and cylindrical length 
1. Finding such a point ensures that there is no spherocylinder whose centre 
lies within a volume vo around this point. The second part in calculating 
a; consists of finding the probability, conditional on the first, that rhe hole 
around the given point can actually accommodate the introduced particle. 
This means that the centre of any other spherocylinder say of kth type should 
not lie within the excluded volume of the introduced particle, i.e., within the 
additional volume 

t&d = 8nr21 + Y n r 3  + 4r12 sin 8, - (4/371r3 + nrP) (12) 
where Hi, is the angle between the long axes of the introduced molecule and 
the solvent molecule of the kth type. Following Andrews, the probability 
Pk that all N k  molecules lie outside z&d is the Nkth power of the probability 
that one of them lies outside u $ , ~ .  Assuming that the available free volume is 
independent of the species, we may write for large values of Nk 

where (V - z=l N L a )  is the “free” volume available to the molecules. 
o can be expected to be of the order of the average volume occupied by a 
molecule when they are close-packed. Following Andrews, we assume that 
w is actually dependent on the density, increasing somewhat as the density 
is lowered. 

The probability that an introduced molecule can be accommodated 
in the N molecule system is now given by 
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72 K. L. SAVITHRAMMA A N D  N. V. MADHUSUDANA 

Hence we can write 

Using the relations (8) and (14), the Gibbs free energy of the hard sphero- 
cylinder system can be written as 

where 

4 
14 f 21(X - 1) + 6(x - 1)' - x i  Sin e i k f ( n i ) f ( n k )  n 

A =  
(3x - 1) 

For the sake of simplicity, we expand sin 8, in terms of Legendre poly- 
nomials. Retaining terms up to P,(cos e i k )  only and ignoring correlations 
between the i and k molecules in the mean field theory, we can writet3 

n 5n 
4 32 

sin Oi, N - - - P'(C0S Bi)P,(COS 6,) 

The pressure is given by35 

The Helmholtz free energy 

VO 

w can be expected to depend on the density3' and is assumed to be of the 
form w = C;=o w,pn. 
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ANDREWS METHOD FOR N-I TRANSITION 73 

For the close packed solid, 

w,,lid is the high density limit. To calculate the low density limit of o, the 
pressure relation in the isotropic phase, viz., 

(19) 
1 

= - - ln (1  - d ) +  ___-- (g)i,o d 1 + o p  

where A. = (6x2  + 9x - 1)/(3x - 1) is expanded in powers of p. Andrews 
used terms up to the third virial coefficient in his calculations on spheres, i.e., 
he assumed that o = oo + a l p .  However, by using this restricted expansion, 
the compressibility factors P*V/NkT of the isotropic phase of sphero- 
cylinders are not in good agreement with the computer  calculation^^^-^^ 
for x = 2 and 3. Hence we took the higher order terms in the expansion of o 
and found that 7 terms of the o expansion are sufficient to give reasonable 
agreement with the computer calculations. To calculate the coefficients 
on, n = 0, 1, . . . , 6 ,  we proceed as follows: 

6 
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14 K. L. SAVITHRAMMA A N D  N. V. MADHUSUDANA 

The last 6 equations along with Eq. (20) are solved for on, n = 0, 1, . . . , 6  as 
functions of x and the virial coefficients. Indeed, utilizing the above expres- 
sions leads to a much better agreement with the equation of state of the hard 
sphere fluid than that given by the original calculations of A n d r e ~ s ~ ~  (see 
Table 111). Nazbeda4' has proposed the following (essentially empirical) 
analytical expression for calculating the virial coefficients of a fluid of hard 
spheroc ylinders. 

B, = (4n2 - 13n + 13)a + (-2nZ + l l n  - 14)a2 + (3n - n2 - 1) (21) 

where o! = x(x + 1)/(3x - 1). The first 6 virial coefficients given by the 
above equation are in very good agreement with Monte Carlo  calculation^^^ 
for x < 3. Furthermore, the expression can be utilised to calculate the virial 
coefficients for any arbitrary value of x 5 3. 

It is obvious that the Andrews method is not a fully self-contained theory 
of the liquid phase, since it does not give an independent method for the 
calculation of the virial coefficients. However, it does provide a convenient 
scheme for calculating the properties near the nematic-isotropic phase 
transition point, utilising the available computer calculations in the iso- 
tropic phase. The equation of state in the isotropic phase of hard sphero- 
cylinders with x = 2 and 3 have been given in Table 111. As is to be expected, 
the results are in very good agreement with computer calculations. 

As we have already discussed in the previous section, a hard spherocylinder 
fluid would have a y = 00. We will now introduce the attractive potential 
to the Andrews model exactly as has been done in the case of SPT. 

Let us denote the activity of a component i by ai,13 

where Yi(rl, . . . , r N )  is the total potential energy of the molecules of the 
type i located at ri with all other molecules. (( >>denotes the ensemble average 
over the ( N  - 1) particle system 2, 3, . . . , N ,  and an averaging over r1 as well, 
giving equal weights to equal volume elements in the latter instance. The 
molecules are assumed to move in a uniform mean field potential ui given 
by Eq. (1). If at is the activity of the component i with the attractive potential 
turned off, then 

Pi Pi 

ai ai 
- = <exp{-Yi/kT}>> = exp{ -u i /kT) .  

Therefore 

ai = a; exp{ + u i / k T } .  
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ANDREWS M E T H O D  FOR N-I TRANSITION 7 5  

Following the procedure of Ref. 13, the configurational Gibbs free energy is 
given by 

9 o P  9 2 P V 2  
= C f(Q,)ln a: - __ - -. 

i =  1 k T  k T  

rn 

The expressions for pressure P and the Helmholtz free energy A ,  can now be 
written. Taking the limit of continuous orientations with the corresponding 
distribution function denoted by F(Q), the thermodynamic quantities take 
the following form 

Gc G,* SOP 9 2 P  2 

N k T  N k T  k T  F' 
where 

= /F(Qi)ln @do. 
N k T  

The internal energy of the system is given by 

= - p o p  - &pi& 

P = P* - p o p 2  - 39, p2$, 

(23) 

(24) 

U 
N 
- 

The pressure is given by 

Substituting for G: and P* from the relations (15) and (16), we can obtain 
the configurational Gibbs free energy and the pressure relation. The Helm- 
holtz free energy is given by 

The normalized distribution function F(S1) which minimises this Helmholtz 
free energy is given by 
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(Eq. 22) can be calculated in both the phases. The assumed value of 9,/uo k 
is adjusted by an iterative procedure till the Gibbs free energy in the two 
phases become equal. The other parameters like C p ,  etc., are then calculated 
as usual. Table IV lists the results for different values of x. 

It is obvious from Table IV that the calculations based on the extended 
Andrews model can be carried out up to x = 2.9, while these based on SPT 
could only be made up to x = 2.45 (Table 11). The trends of different physical 
quantities as functions of x are similar to those given by SPT (Table 11). 
But in the case of the Andrews model, y ‘v 4 for x = 2.075, which is a reason- 
able improvement over x = 1.75 of SPT. Further, it is obvious from Table 
IV that the new theoretical values of the second derivatives, viz., C , ,  C p ,  tl and 
p are considerable improvements over those of SPT. In fact they come quite 
close to the experimental data.41-43 However, the volume change at the 
transition, Ap/p and the heat of transition A U ,  still remain somewhat larger 
than the experimental values. The latter result is a consequence of using the 
mean field approximation.*, l 3  Short-range order effects in the medium 
have to be taken into account to correct for the discrepancies. 

In conclusion, our calculations have shown that SPT leads to very reason- 
able results which can be compared with experimental data on PAA for 
x = 1.75. We can improve upon x as well as other results, particularly the 
second derivatives, by using an extension of the Andrews method along with 
the computer results on hard spherocylinders in the isotropic phase. How- 
ever, as in the original Maier-Saupe model in which only the attractive 
part of the potential was taken into account, the order parameter at T, 
as well as the heat of transition remain considerably higher than the ex- 
perimental values. For cylindrically symmetric rods that we have considered 
here, inclusion of short-range effects in the development of the theory can be 
expected to improve the predictions just as inclusion of such effects improves 
the Maier-Saupe theory.45 We have made some calculations in which the 
models presented in the present paper have been extended to take into 
account short-range order effects. The results will be discussed elsewhere. 

However, considering a nematogenic molecule as a cylindrically sym- 
metric rod is at best an approximation. Most real nematogens have a lower 
symmetry, and, of fate, there have been some attempts to  take into account 
deviations from cylindrical symmetry in the mean field approximation. 
Alben46947 showed that such deviations can account for the lowering of 
order parameter at T,. This result has been confirmed by more recent cal- 
culations due to Straley4* and Luckhurst et a14’ who used a suitable exten- 
sion of the Maier-Saupe model. Very recently Gelbart and Barboyso have 
discussed a theory in which the shape-factor has been taken into account in 
a model with a few fixed orientations. They have again showed that the 
results based on cylindrically symmetric rods can be improved. Developing 
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ANDREWS METHOD FOR N-1 TRANSITION 79 

a model in which such molecules are allowed to take all possible orientations 
and with the appropriate attractive potential superposed on them is ob- 
viously of great interest. 
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